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TECHNICAL MEMORANDUM 1383

ON THE GAS DYNAMICS OF A ROTATING IMPELLER*

By A.’Busemann

INTRODUCTION

Centrifugal pumps apd turbines may sometimes be treated by using
plane incompressible flow where the fluid springs from a source or runs
into a sink in the center of the impeller. However, application of
conforma~ mapping is not so simple for this type of flow as for recti-
linear flow, because a steady flow about the blade sections exists only
in a coordinate system rotating with the W_ade. In a coordinate
system at rest, the velocity field outside of the singularities is free
from sources and rotation, but the impeller rotates in it. By applying
appropriate distributions of sources, sinks, and vortices inside the
blade contour, a flow caribe found which does not pass through the

● rotating blade contour. The action of the flow on these singularities
.- inside the blades creates the torque.

. For blowers with high circumferential velocities, the same consider-
ations would have to be extended by the requirements of a compressible
flow. Though there exist corresponding laws of forces on sources, sinks,
~nd vortices, the conditions become considerably more involved because
the freedom from vortices in the regular domain of the flow concerns the
velocity field whereas freedom from sources exists only in steady flow and
involves the stream-density field (the product of velocity and gas density).
It becomes impossible to superimpose two fields free fpom sources and
vortices into a new field which is free from sources and vortices;
furthermore, in acompressible flow one can operate with distributed
singularities only, since a certain region around point sources and point
vortices is void of any velocity field. For these reasons, the laws of
forces on singularities have only a very limited range of application in
gas dynamics.

It is known that the velocity fields of incompressible flow and
mgnetic fields are similar with respect to the distribution of the
vector and to the field energy. Accordingly, one should anticipate the
forces on corresponding singularities to be equal so that a displacement
of the singularities produces the amount of work required for the change
in field energy connected with it. Contrary to this expectation the

*l’ZurGasdynamik des drehenden Schaufelsterns.’r ZeLtschrift f%
- angewandte Mathematik und Mechanik, vol. 18j issue 1, Feb. 1938, pp. 31-38,

dedicated to the memory of the late editor Erich Trefftz.
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hydrodynamic and the magnetic forces are always opposite in sign. The .;
result is that, on the one hand, the forces on magnetic sources and sinks
(north and south poles) and.those on hydrodynamic vortices are such that –
their displacement work balances the field energy. On the other hand, L

for the displacement of hydrodynamic sowces and sinks and of magnetic
vortices (around conductors of electric currents), the opposite sign of
the displacement work would be required to balance the field energy.
The difference is restored for the magnetic vortex according to Faradayrs
induction law by the well-known fact that the electric current flowing
in the conductor is opposed, during any displacement,by induced elec-

—

tromotive forces, the overcoming of which requires a supply of electri&al
energy. Likewise, addition&1 energy must be supplied during displace-
ments,of the hydrodynamic sources and sinks; in this case the ener~ -

—

supply is caused by higher pressures at the locati~n of the sources and
lower pressures at the location of the s@ks compared to the pressures

—

of the steady flow. These pressure differences are precisely what
constitutes the pressure heads or pressure differentials for rotating
machinery.

For plane flow, one may regard instead of the field of the stream-
lines the field of the potential lines which are orthogonal to the
streamlines. In the case of incompressibleflow, this field is in the

.
,

regular domain free from sources and vortices; however, sources and
—-.

vortices are interchanged, since a streamline source”representsa
.—

potential-line vortex amd vice versa. Comparing plane potential lines e-

with the plane field of magnetic lines of force, one finds now perfect
agreement including the sign of the forces and the induction law. If
one wants to determine’the additional pressure difference between two
points of the field which alters Bernoullifs pressure difference of the
steady flow, one must draw a line comecting these points and observe
on it the variation with time in the nuniberof the potential lines which
intersect this connecting line. The connecting line must not pass over
source points of the potential lines. This is the same rule which
applies for the det~erminatj.onof induced electromotiveforces. In order
to ascertain whether the connecting line has moved over a source, these
sources cannot be allowed to appear and disappear. For magnetic souices,
this prerequisite is obviously satisfied by the fact that a north pole
can be created only by separating a north and a south pole of equal
strength. The sources of the potential lines represent-vortices of the
streamlines and it follows from Helmholtzr vortex t,heoremsthat, in two-
dimensional flow, a vortex rotating clockwise canbe produced onlyby
separating a vortex rotating clockwise from another one rotating counter-
clockwise. For these plane fields, the similarity is t-hereforevery far
reaching. For magnetic and hydrodynamicfields in space, the similarity
is subject to limitations because lines of forces remain lines in space
whereas the potential lines change to potential surfaces insofar as ‘
unique surfaces orthogonal to the streamlines exist. Generally, one is
therefore limited to correlate only the ”hydrodynamicvelocity field and /-
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the magnetic force field. If one identifies velocity and magnetic-field
intensitv. then the source matches the mametic pole smd the hydrodynamic

. vortex &~ches the wire through which cu&ent fl~ws; with
induction law, however, it is @t the wire with electric
hydrodynamic source which canbe compared.

Whereas the laws about forces on sources, sinks, and
maintain their form in transfer from hydrodynamics to gas
lose their major field of application, the hydrodynamical

respect to the.
current and the

vortices almost
@IHliCS but
induction law

must correspond to a similarly formulated gas-dynamical induction law
and at the same time mlntain to some extent its applicability, since
it deals only with the pressure difference of unsteady flow as compared
to steady flow. It is just this pressure difference which is related to
the pressure rise in blowers. Thusj the author will give below the
general derivation of the gas-dynamical induction kw as he presented it
for the first time in the summer of 1936 in a colloquimn on gas dynsmics
at the DVL under the chairmanship of E. Trefftz. In a second &t, he
will show that the torque at the impeller in nonviscous compressible
flow, even for circumferentialvelocities below sonic velocity, does not
result from the effective pressure rise alone as in nonviscous incom-

. pressible flow, but that, on the contrary, even tithout effective Pressure
rise, energy quantities may be radiated from the rotating impeller.

.

I. TIE PRESSURE RISE OFA C~ BLOWER

1. Derivation of the Gas-Dynsmical Induction Law

In the revision of the section “Hydrodynamics” for the &h edition
of A. F6PP1, “Vorlesungen tibertechnische Mechanik” (Lectures on technical
mechanics), volume IV, page h17j I a=iv~ the “-~~ ifi~tio~
law. “ If one limits the application to a loss-free gas flow of constant
entropy, the derivation -y be transferred directly to gases.

For a nonviscous gas, free from gravity, of pressure p, density p,
and velocity W with the components u, v, w h the directions of
the spatial coordinates x, y, Z, one obtains, in dependence on the
time t, the following equations of motion:

h=pdu h=pd~ ?P dw

-z z -~ z -—=”%dz
(1)

For constant entropy s there applies for the enthalpy i of the gas:

~=q
(2)

P
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By substitution of this relationship into equation (1) there result the
?

following equations:

bi_dq, .ti=~,
‘~ dt ~ dt

For a certain time t = to one can combine
tives into the following total differential

If one introduces the
line element in space

du&+Q@-&i =Z
dt

convention that the

+

-&_dy
dZ dt

-“

(3)

these three partial deriva-
of the enthalpy in space:

dt
. .

components dx, dy, dz of a
(which are used in equation (h) only for the —

the t = to) shall be for all times, the co~onents of.a line element
attached to the gas which connects the adjacent points G1 and G2

moved with the gas, the following transformation of equation (k) holds:

-di =% (U

since in this case the

dx+vdy+wdz)-udu- vdv-wdw (5) “:

.

interchange of the differentiation
-.

()~(dx)=d~ = du, etc., is valid. “If one places the points G1 and G2 -

attached to the gas farther apart, one may integrate the differentials
indicated in equation (5) along a line from G1 to G2 moved with the

gas, so that the following difference in enthalpy is then obtained:

.

rG2

il-i2=& 1(udx+vdy+wdz) +~~12+V12+W12)-
dt G1

* (u# + VJ’+ w# ) (6)

If one introduces, instead of the points G1 and G2 a>tached to the ~ _. .= -
gas, the points fixed in’space P1 which at the time % = to- pa) .
coincide with the former, one can prolong the line between G1 and G2 P

.
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.
with those gas points sweeping over the points P1 and P2 after the

time % = to (fig. 1). The integration along this line, which is like-
. wise attached to the gas (and is therefore determined in the development

with ttie) but connects the fixed points P1 and P2, includes beyond

the integral required in equation (6) contributions which result from the

shift of the integration limits and have the value ti12 - ?22 dt. If

one subtracts the latter, one obtains the following relation:

* (U.# + V2=’+ W22)

or

d

f

Pa
(udx+vdy+wdz)

-Zpl
(7)

The right side of the equation represents the induced pressure rise which
is generated between .thepoints PI and P2. Note that one deals here

not with a partial differentiation with respect to time but with a total
differentiation along a line moved with the gas. The selection of the
line at the time ‘t. is arbitrary. If this line, once selected, is not
moved exactly with the gas, there originates an error which is proportional
to the vortices located between the line moved exactly with the gas and the
wrong connecting line.

2. Applications of the ~uction Law

Ina steady gas flow free from vortices, the right side qf equation (7)
disappears because in the first place the integral, due to the freedom
from vorticity, is independent of the path and equals the potential differ-
ence ‘2 - 01 and in the second place, this potential difference, due to

the steady state, is independent of the tfie.
5

.
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For a
disappears

steady gas flow
only for points

.

with vortices, the right side of equation (7)
PI and P2 which lie on the same stream-

line. If one draws the connecting line from PI to P2 along this - ““
streamline, all its points remain on this streamline later on, too. The
entire integration path varies with time only in that it extends beyond

—

the downstream point P2 in a flat loop which m@es, however, no contrf.-
bution to the imtegral. The value of the integral on”%e remaining piece
from P1 to P2 is again independent of the time so that the right side

of equation (7) disappears. The vanishing right side of eqtition (7).
establishes on the left side the validity of the Bernoulli equation for
the gas flow.

For a flow which is free from vortices but variable with time, the
value of the integral is at every instant, independently of the path,
equal to the potential difference o~ -Q1. However, since the velocity.

distribution varies with time, the potential difference also becomes ,
dependent on the time, and one obtains the well-known relationship:

—

i2+* %’+”z+”b’)-~.+ik:+vz+w?j‘-%”+)( .

or “.— —

(8)
—

This is the generalized Bernoulli eqyation for the unsteady gas flow “
free fram vortices. —

A further application of the induction law is possible for nonsteady
gas flows which vary periodically with time. In this case, it is easier
to determine, instead of the pressure rise at every instant, the mean
value of the pressure rise for the period of the duration T.

—
If one

integrates the right side of eqmtion (7) with respect to t over the
—

period and then
time average:

{lP’hl=-
T

(u

‘1

divides by the duration of this period, one obtains t~

] p“”dx+”v”dy+w-dz) +
‘1

H

(UdX+ v“dy+ wdz)
to ‘ P2” to+T

(9) ‘-

.
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Since the velocity field is the ssne at the times to and to +

mean-pressure rise indicated above represents the circulation in
instantaneous field on a closed line frcm P1 via P2 back to

dividedby the time T.

7

T, the

one

R

Figure 2 shows how to apply this rule to the periodic flow in a
rotor. One reco~zes that the circulation required byeq~tion (9) .“
matches exactly the circulation I’ around the blade. In the case of
m blades and an angular

by T = ~; accordingly,

velocity of the impeller u, the period is given

the pressure rise of the rotor smounfs to:

($?a)

Thus, the significance of the circulation around the blades of the
impeller with respect to the pressure rise is established for alJ gas
flows tithout increase in entropy. However, it remains to be investi-
gated whether also the torque and therewith-the power

. depends in the ssme manner on the blade circulation.

. II. TORQUE OF THE IMPELLER WITHOUT MASS

consumption

The torque of the impeller in plane flow may be determined from the
difference of the moments of momentum over a control circle outside the
impeller and one inside the impeller. If one forms in polsr coordinates
the velocity components in the direction of the radius Wr and of the

circumference Wu, with Wu counted positive in the direction of the

increasing angle ~, there results on the arc element r d$ of a circle
of the radius r the mass flow pwrr d$. The momentum of this quantity

in circumferential direction is obtained by multiplication by Wu, the
moment of momentw by multiplication by rwu. By integration of the
moment of momentum over the entire circtierence one obtains a torque

J
2YC

D=r2 @TrWu d~ (lo)
o

If the entering fluid in the interior of the hnpell.eris supplied
without rotation, a sufficiently small radius may exist on which circum-
ferential components of the velocity do not’yet appear. ~ this case,
the integral.over the external circle according to equation (10) already

* yields the torque of the impeller. For incompressible flow with
P = const., the “velocitycomponents, Wr and Wu do not correlate in

.
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the absence of
tion over Wu

integral sign.

obstacles outside of the iniieller,so that “f& the in%gra-. ‘“
..

the mean value of Wr qay be taken out from under the ._

The mean value of Wr multiplied by the density p apd ‘ _.

the circumference of the circle 2rfi,however, is simply the mass G dis-
charged per second through the impeller. Therefore, in the case of incom- ,
pressible flow, the torque may be split into the fold@wing factors: _

(U)

Here m is the number of blades, and i’ the circulation around each
of the m blades; the latter transformation results from equation (ga).
Thus, for an incompressible flow a discharge as weld as a circulation
around the blades 1s necessary when a torque is to occur.

Since; according to the results of the previous.section, the pres-
sure rise also depends directly on the blade circulation for compressible

...

flow, there would also be a certain @stification for assuming that in .
the case’of compressible flow no correlation between tischarge and blade
circulation enters equatton (10). However, one single ==@e wh=%a “-
torque occurs without discharge or without blade circulation willbe
sufficient for deciding this question in the negative sense.

v.
M the

case of the example selected, there appears neither “atischhrge nor “a
blade circulation, and yet one obtains at higher velocities a torque
d3.fferentfrom’zero.

J21order to represent the flow for the case of.vtis~ Uscwge
and vsmisbing blade circulation at a large distance.from the impelJer,
one can replace the 3mpeller by a rotating wavy cylinder. The simplest
wavy cylinder has a cross section in which on the circumference of a
circle of the radius R, m sinusoidal waves with the wave snplitude A
are superimposed (fig. 3 for the case m = 3). BI case one wants to
represent the effect of an hpeller @th u blades_more accurately, one
could still add further waves with the amplitudes ~, A3, etc., and

the numbers 2m, ~, etc. If the smplitude A, for the sake of further
simplification of the calculation, is limited to small values compared
to the radius R or, more specifically, compared to the wave

length L = =, one can neglect in equation (8) the square of the gas
m .-

velocity compared to the other sunmands. Considerx constant entropy
according to equation (2) one then obtains
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. From the potential 4(r,$) the velocity components sre obtained
in the following msaner:

.

a4 I ao
‘r=— wu =-—

&c . rw
(13)

Expressed by these components the continuity
gas flow reads:

$+ Y%%=*+PE+

equation of the unsteady

la4

1

la%.—— =
;x+#~2

(14)

FYom equations (12) =d (11) there results the well-lamwn equation of
sound propagation:

.

(15)

in which .s is the sonic velocity of the gas according to the following
. relationship:

~2=5
dp

(16)

Since, for small velocities, the pressure and the density deviate only
little from the values of the gas at rest P. and Po, a may be

regarded as constant and equal to the value of the sonic velocity for
this state”. By ktegration of’the pressure at constant density, there
results from equation (32) the pressure

P ‘ Po - PO* (17)

The impenetrability of the surface of the wavy cylinder furnishes the
boundary condition for the differential equation (15). At the ttie t = O
the cylinder has the following radii r depending on the central angle $:

r= R -A sin@ (18)
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Due to the rotation at the angular velocity u (fig. 3), one obtains
.

the dependency of the cylinder radii on ~“ and t

r($,t) = R -

Hence, the spinning wavy cylinder
the velocity

Asinm(~ -d)

produces a radial

wr=~=An0cosm(4 -&)

E&cause of the smallness of the smplitude A, it is

pqmplng motion with “ —

sufficient to pre-.
scribe this value for the radial component of the gas”velocity. Accordl~ ....
to equation (13), there results the bountiy conditiai for O:

T?= ()&
r & r=R

= Amucosm(* -@t) (20) - -
-.— —

Since the integration proper of the differential equation for the
“

propagation of sound is known and we are here concerned only with the
.

application to the impeller, the detailed calculation and the determina-
tion of the integration constants may be omitted after stating that the
elimination of the constants was performed in such a manner that in the

—

asymptotic development of the solution for large radii only outgoing
waves (no incondng waves) were retained. The solution which thereby
becsme unique may be written in terms of the Bessel functions of the

—

first and second kind Jm and Ym and reads
.

(2i]

.

.
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. The phase
kB the value

.

u

angle 5 in equation (21), though in itself unessential>

-. fmtim

If one substitutes this solution into the equation (10) for the torque,
its integration can be acbieved with tkk aid of the formulal:

Jm(x)Ym’(x) -ym(x)Jm’(x) = ~

One obtains thus the torque

.

(23)

. The power consumption E = IkJ corresponds to the radiated sound output.

In order to represent the results in tiensionless form, we shall
use as the Mach nmnber M of the gas flow the ratio of the circ~eren-
tial velocity u and the sonic velocity a:

A coefficient for the resistance to the motion ~ equal to the

2 the generatingtorque D divided by the dynamic pressure q = *OU ,

surface of the cylinder F = ZTbc,and the radius R is introduced:

(25)

%mpsre F333n&Mises: Differentialgleichumgender Physik (Differ-
.*) ential equations in physics), 1930, vol. 1, p. 414.
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and @ second coefficient is formed for ,theradiated energy Ce
.

equal

h the radiated energy E = ~ divided by q, F, aiidthe sonic
—

velocity a:
.-

*“

E
Ce=l ‘%# (26)

~pou2a2&
—

~ this form the results of the calculation are plotted in figures k
and 5 with the Mach qmber used as”the abscissa and the coefficients ~

or ce used as.the or&uate. The values m indicate-dat the individual

curves signify the number of waves on the circumference of the circle.
The ordinate has as its unit a value which is formed from the amplitude A
and the wave length L, or the emplitude A, the nmnber of waves m, and
the radius R.

One recognizes from the figures that the torque and likewise the
radiated ener~ disappears only for incompressible floW and for gas flow
with very small velocities. In the subsonic domain there results for
growing m an ever increasing region in which no.noteworthy torques

.

occur. The msximum of ~ always 13es at the Mach number 1.
.

It is interesting to ccmpare the rotating wavy cylinder in a resting
gas end the resting wavy cylinder with a circulatory flow treated by
G. J. Taylor2. While it was found there that even at velocities higher
than sonic velocity damped perturbation waves occur, the above calcula-
tion, inverscily,yields the result that even below sunic velocity the
disturbance extends to infinity. Both cases agree at m = ~ (that is,
for a cylinder radius large compared to the wave length) with the solu-
tion for”a flat ylate with sinusoidal waves treated before by J.’Ackeret3.

suMMARY

It is shown by the exsmple of the plane impeller that In a gas
flow with constant entropy as in an incompressible flow, the pressure
head of a rotating impeller depends only on the circulation around the
blades. In contrast to incompressible flow, however~ one obtains for
the impeller rotating freely in an infinite gas mass a larger torque
than would be necessary for production of the pressure rise because, “ .
due to the periodic disturbance caused by the rotating impeller, sound —

2GOXJ. Tw~or.. ZAMM 10, 1930, p. 334.
3J0 Ackeret: Eelvetia Phys. Acts 1, XI, 1928.

%
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.
waves of finite energy travel away to infinity. This energy produces a
resistance which grows with a high initial power of the circumferential

. velocities and, when sonic velocity is exceeded, gradually becomes the

wave resistance of bodies moved rectilinearly at supersonic velocity.

Translated by Mary L. Mahler
National Advisory Comnittee
for Aeronautics

‘See footnote 3 on p. 12.

.0
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Figure l.- Moving pathofintegration.

Figure 2.- Rotatinghn@ler.
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Figure 3.- Cross sectionofthecylindercorrugatedby m = 3 waves.
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